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Abstract

As the potential applied to the bromide on Ag(001) thin layer electrochemical cell increases past a critical level, the bromide

adlayer undergoes a second order phase transition from a disordered state to an ordered state. Using surface X-ray diffraction we

measured the time response of this phase transition due to an applied step potential. We find that the time response of the phase

transition is limited by the properties of the thin layer geometry. By modeling the electrochemical cell as a RC circuit, we argue that

the observed time delay is primarily due to the slow diffusion of charge into the central region of the electrode surface. Crown

Copyright # 2002 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adsorbed species on an electrode surface can undergo

both first and second order phase transitions as a

function of the applied potential. The structure of these

phases can be ascertained from both scanning probe and

X-ray scattering techniques. However, much less is

known about the kinetics of these phase transitions.

For scanning probe measurements, the kinetic behavior

is strongly influenced by the confinement of the sample

under the scanning tip. With X-ray measurements the

time response of the electrode is influenced by the

characteristics of the ‘thin layer cell’ geometry in which

the electrolyte region is only a few microns thick. This

geometry has provided a compromise between the

conflicting needs of (a) maintaining electrochemical

equilibrium and (b) minimizing the absorption in and

scattering from the electrolyte. This study has been

conducted, in part, to gauge the effectiveness of the thin

layer geometry for measuring the kinetics of phase

transitions. In particular we have observed and modeled

the inherent time dependent response of the thin layer

geometry arising from the internal resistance and

capacitance of the cell.

The electrochemical deposition of bromide on

Ag(001) has previously been described as the deposition

of adsorbates into a square lattice of substrate sites [1].

The energetics of this system may be modeled by the

‘Ising’ model Hamiltonian, H�/J ai ,j ninj�/m ai ni ,

where J is a lateral interaction parameter, m is the

electrochemical potential, and the first sum is taken over

nearest neighbors on a square lattice [2]. The model is

isomorphic to the Ising spin (s�/1/2) model in two

dimensions and predicts a second order phase transition

as the applied potential increases past a critical value [1].

The bromide ions are adsorbed on hollow sites of the

underlying square lattice (Fig. 1). Adjacent sites in the

lattice cannot be occupied because the bromide ion is

larger than the silver atom. Consequently the bromide

lattice may occupy one of two possible �2�/�2 sub-

lattices. At low potentials, the system is characterized by

a long-range disorder with domains of small size being

randomly and equally distributed between the two sub-
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lattices. As the applied potential increases, the average

domain size increases. Above a critical potential the

average domain size will be on the order of the size of

the entire system (typically a facet size) so that one of the

two sub-lattices will have a majority occupation. This

spontaneous symmetry breaking distinguishes the or-

dered phase of the system.

The order�/disorder phase transition may be directly

monitored by measuring the X-ray scattering intensity

from the surface at specific locations in the reciprocal

space [1]. Relative to the body-centered tetragonal

conventional unit cell, the (1, 0, L ) truncation rod

[3,4] arises from the underlying silver lattice. As the

adlayer coverage increases (irrespective of ordering), the

intensity of this rod decreases. On the other hand, the

(1/2, 1/2, L ) rod corresponds to a long-range domina-

tion of one of the two domain types. The scattered

intensity (S ) of the (1/2, 1/2, L ) rod is predicted to scale

as the square of the Ising order parameter: S 8/(V�/

Vc)
2b for V �/Vc [1,2], where Vc is the critical potential.

The solution of the two dimensional- (2D) Ising model

on a square lattice predicts an exponent b�/1/8 [5,6].

Past observations are consistent with the b�/1/8 value

close to the transition but deviate from this form far

from the transition [1]. Although the exponent is

universal, the critical potential is not and depends on

concentration.
Similar diffraction pattern changes have been used by

Finnefrock et al. to study the kinetics of the electro-

deposition of Cu�/Cl on the Pt(111) surface near an

order-disorder phase transition [7]. They have attributed

the kinetic behavior of this system primarily to the

nucleation and growth of 2D islands rather than to the

limitations of the thin-layer cell geometry. However,

there is a significant difference between the Cu�/Cl on

Pt(111) phase transition and the Br on Ag(001) phase

transition. The Cu�/Cl on Pt(111) phase transition is
first order and is immediately preceded by a discontin-

uous change in coverage. The bromide on Ag(001) phase

transition, in contrast, is second order and may, there-

fore, be much faster. In this paper, we present results for

the kinetics of the electroadsorption of Br on Ag(001).

Our results indicate that the observed time-dependent

transition is primarily governed by the properties of the

thin layer geometry of the electrochemical cell.

2. Experimental methods

We prepared an electrochemical cell of Ag(001) in a

thin layer of 1 M NaClO4 and 10 mM KBr solution

(pH�/10). We used a Ag(001) single crystal of radius

R�/4.0 mm which was oriented within 0.28 of the (001)
crystallographic plane. The crystal was chemically

polished using a CrO3/HCl solution. After the crystal

was cleaned in concentrated sulfuric acid and pure

water, the sample surface was covered by a drop of

water and transferred into the electrochemical X-ray

scattering cell. We then used a 6 mm polypropylene film

to seal the cell. Excess solution was drained from the cell

so that a thin capillary film of electrolyte remained
between the crystal and the polypropylene film. We

flushed an outer chamber with N2 gas to prevent oxygen

from diffusing through the polypropylene membrane [8].

In units of the body-centered-tetragonal conventional

unit cell (a�/b�/2.889 Å, c�/4.086 Å) we monitored the

surface X-ray diffraction. The observations were made

at beam line X22A of the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory
using a four-circle diffractometer. Diffraction positions

were selected using the symmetric v�/0 geometry. The

focused incident beam was square in shape with dimen-

Fig. 1. Real space sketch of the Ag(001) surface (hollow circles). Relative to the body-centered-tetragonal conventional unit cell, a lattice gas of

bromide atoms (filled circles) forming small domains of c (2�/2) structures are shown in a phase exhibiting long-range disorder (left) and in a phase

exhibiting long-range order (right). The black solid circles and the gray solid circles respectively correspond to bromide atoms on the two different

sub-lattices. Note than even in the ordered phase, there are small domains which lie on the minority sub-lattice. Such a domain is seen in the lower

right of the ordered phase sample.
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sions (0.5�/0.5 mm). This beam was diffracted from the

center of the sample when the steady-state response of

the cell was being studied. When the time response of the

cell was being monitored, the beam was diffracted from
the sample at an off-center position. We estimated this

radius as r�/3.5 mm.

The steady state response of the cell was determined

by measuring the intensity of the (1/2, 1/2, L ) rod at L�/

0.05 as the potential applied at the Ag sample (relative

to the [Ag/AgCl] reference electrode) swept from �/0.4

to �/0.8 V with steps of 0.01 V. The intensity at each

potential in this range was measured for 10 s to allow
the system to approach a steady state. The scan

direction was then reversed to observe the hysteresis of

the transition.

In order to observe the time dependence of the phase

transition, we applied four square wave potentials of

varying amplitudes across the cell and observed the time

responses of the diffracted X-ray intensity. We used a

stand-alone multi-channel scaler (MCS) in a manner
similar to the method of Finnefrock et al. [7] to monitor

the time response. The applied square waves each had a

high potential for �/0.2 s and a low potential for �/0.2

s. The time period from one fall of the applied cell

potential to the next fall was divided into many sub-

intervals (or ‘channels’) each 400 ms in duration. After

the applied square wave potential fell, the MCS unit

began sweeping through all of the channels and
incremented the respective channel counters to record

the number of photons that were observed during the

interval. Typical count rates were on the order of �/2

counts per channel per sweep. The process was repeated

500 times to accumulate a smooth distribution of counts

between adjacent sub-intervals. The first 1024 intervals

(corresponding to 0.4096 s) of each period were

recorded. During the remaining portion of the period
the computer remained idle until the square wave

potential again fell. We observed the response of the

system to four different applied square wave potentials:

A) �/0.506 to �/0.748 to �/0.506 V,

B) �/0.599 to �/0.751 to �/0.599 V,

C) �/0.650 to �/0.752 to �/0.650 V, and

D) �/0.703 to �/0.750 to �/0.703 V.

Only the amplitude of the applied potential was

varied. The timing of the fall and the rise was not

changed throughout the experiment.

3. Experimental results

We observed (Fig. 2) that the steady state scattered
intensity from the (1/2, 1/2, L ) rod was consistent with

the Ising model prediction of S 8/(V�/Vc)
2b for V �/Vc.

However, there was some amount of hysteresis that

caused the critical potential to shift up or down

depending on the direction of the scan. Such sweep-

dependent hysteretic effects are common in electroche-

mical systems, so we were not concerned that we had

failed to reach thermodynamic equilibrium. The best fits

shown in Fig. 2 were produced by minimizing the x2

value from the observed and modeled intensities for

potentials from �/0.8 to �/0.5 V. The critical exponents

of the fits were consistent with the b�/1/8 value of the

2D-Ising model. The observed critical potentials of

�/0.72 and �/0.73 V were slightly more positive than

previous observations [1], but this shift may be attrib-

uted to differences in the reference electrode. As with

other critical phenomena, the Ising model only provides

a good fit near the critical level. Farther away from the

critical level, the model becomes less accurate. The limit

of this model is seen in its failure to predict the observed

saturation intensity.

When we applied a square wave that jumped across

this critical potential, we observed that the transition

from the disordered state to the ordered state did not

immediately occur. Unfortunately the timing of the

applied square wave was miscalibrated, so we later

determined the times at which the wave fell and rose by

finding the best possible fit to our results as discussed in

the next section. Fig. 3 shows the square wave potential

that we determined was applied and the response of the

cell. It is significant that the intensity of the diffracted X-

rays does not have a square shaped time-dependence

like the applied cell potential. There are two possible

explanations of this observed time delay: (a) the kinetics

Fig. 2. Observed intensity of X-ray scattering at (1/2, 1/2, 0.05). The

hollow circles represent the intensity as the applied potential swept

from �/0.8 to �/0.4 V. The solid circles represent the intensity as the

applied potential swept from �/0.4 to �/0.8 V. Each data point was

measured for 10 s. The data points from �/0.5 to �/0.8 V were fit to the

model S (V )�/A0(V�/Vc)
2b�/B0 in order to minimize the x2 value. For

the increasing potential, A0�/502009/600, Vc�/�/0.73039/0.0002,

b�/0.1299/0.003, and B0�/2350. For the decreasing potential, A0�/

494009/600, Vc�/�/0.7209/0.0002, b�/0.13519/0.003, and B0�/2350.
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of the phase transition is delaying the transition from

the disordered state to the ordered state as in the study

of Finnefrock et al. [7], and (b) there is a delay
associated with the transfer of the applied potential to

the point on the crystal surface being observed with X-

rays. We model the electrochemical cell as a RC circuit

to examine the latter possibility.

4. Modeling of potential response

Our experimental measurements observed the relative

ordering of the adlayer at a localized point on the
sample crystal. The incident beam was diffracted from a

small area of the sample surface. Consequently the

observed intensity must depend on the relative ordering

of the adlayer at the point of incidence, which in turn

depends on the localized potential. In order to predict

the time-dependence of this localized potential, we

model the thin layer electrochemical cell as a RC circuit.

The model takes into account both (a) the resistance of
the electrolyte and (b) the capacitance associated with

the electrical double layer. Any time delays associated

with the applied potential traveling through the bulk of

the electrolyte are negligible because the resistance and

capacitance of the bulk are very small compared with

the region of the thin layer. We, therefore, assume that

the step potential is applied instantly (and equally) at all

points on the edge of the crystal.
For convenience the resistivity of the electrolyte is

represented by r , the capacitance per unit area due to

the electrical double layer is represented by g , the

thickness of the thin film of electrolyte is represented

by Dz , and the radius of the crystal is represented by R .

For times less than t0, the potential applied at the edged

of the crystal is Vi. For times greater than t0, the applied
potential is Vf. We assume that the crystal has a uniform

potential of Vi at all points in its interior prior to t0. At

time t we represent the potential at radius r and at polar

angle 8 by V (r , 8 , t) . For 0B/r B/R and t �/t0, a

differential equation describing the thin layer geometry

may be found by modeling the system as an array of

infinitesimal resistors and capacitors. Applying Ohm’s

Law, charge conservation, and the definition of capaci-
tance to this array leads to the diffusion equation:

1

k

@V

@t
�92V (1)

where 1/k�/(rg /Dz). The equation describes the diffu-

sion of charge across the surface of the electrode. The

system is subject to the boundary conditions:

V (r; 8 ; tBt0)�Vi (0BrBR) (2)

and

V (r�R; 8 ; t�t0)�Vf (3)

We solved this diffusion boundary-value problem by

applying the method of separating variables [9] and

observing that the solution should not depend on 8
because of cylindrical symmetry. We found:

V (r; 8 ; t)� (Vf �Vi)�
1�2

X�
n�1

J0(jn r=R)

jn � J1(jn)
e�(j2

nk=R2)t

�
�Vi (4)

where J0(r ?) and J1(r ?) are the Bessel functions of the

zeroth and first order and the jn are the n th roots of the

Bessel function J0(r ?).
For short times and for positions near the edge of the

crystal, many terms in the expansion Eq. (4) must be

included for an accurate representation. Near the edge

of the crystal a simpler solution may be found by taking

the limit of an infinite diameter crystal. This limit
reduces the problem to a 1D case in which the distance

from the edge of the crystal is represented by x . The

potential is applied at position x�/0 at time t�/t0. As a

result of the charge diffusion, the potential V (x , t) at

points ‘inside’ the crystal are described by Eq. (1) subject

to the boundary conditions:

V (x; tB t0)�Vi (x�0) (5)

and

V (x�0; t�t0)�Vf (6)

The solution to the 1D version of the problem may be

found by applying a Laplace transform followed by an

inverse transform. The result [10] is:

Fig. 3. The solid line shows a step potential which was applied to the

Ag(001) crystal relative to the [Ag/AgCl] reference electrode. The fall

time (t1�/0.004 s) and the rise time (t2�/0.216 s) of the applied

potential were determined by varying their values to produce the best

fit to the model discussed in Section 5. The open circles show the

scattered intensity at (1/2, 1/2, 0.05). High intensities correspond to the

ordered phase of the adlayer, while low intensities correspond to the

disordered phase. Each circle represents the average intensity recorded

in ten adjacent channels of the MCS unit.
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V (x; t)�(Vf �Vi)

�
1�erf

�
x

2

ffiffiffiffiffi
1

kt

s ��
�Vi (7)

where erf(z) is the error function.

This second solution clearly has a simpler closed

form, and for points near the edge of the crystal the
equation is much more convenient to work with. At

radius r�/0.995R , we used MATHEMATICA 4.0 [11] to

observe that the 1D solution Eq. (7) provides a very

close fit to the 2D solution produced by the first 1000

terms of the sum in Eq. (4). However, at points in the

interior of the crystal the two solutions predict signifi-

cantly different behavior. Fig. 4 compares these predic-

tions. With the exception of a negative tail near zero
(due to the absence of higher order terms), the first nine

terms of the sum in Eq. (4) provide a good fit for points

located at radius r�/0.7R . By setting the negative

potentials of the tail to 0, a more accurate solution is

generated (not shown). For this work we have used the

first nine terms of the sum with all negative values being

set to 0.

5. Modeling of Intensity Response

In modeling the response of the cell so far we have

proposed a model that predicts the electrical potential at

a localized point on the crystal. Our measurements,

however, have recorded a scattered intensity . In order to

relate our model to our observations, we must addi-

tionally model the scattered intensity arising from the

localized potential. Before doing so we briefly point out
that the scattered intensity that we want to model

actually arises from the incident X-ray beam being

diffracted from a stripe cutting across the crystal.

Although the incident beam is square in shape, the

illuminated region is rectangular because of the small

incidence angle. Our model for the time-dependence of

the potential is also position-dependent and predicts

that the potential in the stripe of incidence is non-
uniform. In order to simplify our problem, we make the

approximation that the potential throughout this region

takes on the value predicted at its center.

As was mentioned earlier, the steady-state scattered

intensity is explained well by the 2D-Ising model in

which S�/A0(V�/Vc)
2b�/B0 for V �/Vc. We have in-

cluded the term B0 to represent the background intensity

level. A0 is the amplitude of the power law. By recalling
the observed hysteresis due to the direction of the sweep

(Fig. 2), we realize that two sets of parameters will be

needed to describe the intensity response: one for a

rising potential and one for a falling potential. We

introduce the variables A0r, br, and Vcr to respectively

represent the amplitude of the power law, the critical

exponent, and the critical potential associated with the

rising potential. The variables A0f, bf, and Vcf similarly
represent the respective terms in the intensity response

of the falling potential. We describe these intensity

responses as:

Srise(V )�A0r(V�Vcr)
2br �B0; V �Vcr

Srise(V )�B0; V BVcr

�
(8)

and

Sfall(V )�A0f (V�Vcf )
2bf �B0; V �Vcf

Sfall(V )�B0; V BVcf

�
(9)

The parameters used in fitting will depend on the

sweep range and the sweep rate of the localized

potential. Once suitable values for the parameters are

determined, this second model will take the localized

potential at a fixed point of the crystal and predict the

scattered intensity that should arise.

Section 2 describes the four square-wave potentials we
applied. We gathered time-dependent intensity measure-

ments for each of these potentials. In modeling our

observations, we assumed that immediately prior to an

applied potential jump from V1 to V2, the crystal

potential was uniformly fixed at V1. We represented

the fall time of the applied potentials with the parameter

t1 and the rise time of the applied potentials with the

parameter t2. These two parameters were referenced to
the first channel of the MCS being assigned t�/0. Since

only the amplitudes of the applied waves were changed

during the experiment, t1 and t2 maintained the same

Fig. 4. The time-dependent potential responses predicted by different

models at a position 1.2 mm from the edge of a crystal are shown for

diffusion constant, k�/100 mm2 s�1 when the applied potential jumps

from 0 to 1 V. The solid gray line shows the potential predicted by the

1D model (Eq. (7)) at x�/1.2 mm. The dashed black line and the

dotted black line show the potential predicted by the 2D model (Eq.

(4)) at radial position, r�/2.8 mm on a crystal of radius, R�/4.0 mm.

The dashed line uses the first ten terms of Eq. (4), while the dotted line

uses the first 1000 terms of Eq. (4). The higher order terms only play a

significant role at very small times corresponding to very small

intensities as shown in the inset.
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values when fitting the responses of different applied

potentials.

In the 2D solution Eq. (4) we used the known value

R�/4.0 mm for the radius of the sample. To represent

the center position of the incident X-rays we assigned a

radius of r�/2.8 mm in solution Eq. (4). This value is

smaller than our estimate of 3.5 mm made during our

experimental set-up, but it produces a better fit in our

modeling. At this off-center position, we observed that

the steady-state response of the cell in the disordered

phase resulted in a background intensity (B0) of �/1000

counts per second. In order to find the best set of

parameters for all of our observations, we first picked

the observed intensity due to one of the applied

potentials. We varied the parameters k , t1, t2, and the

parameters of Eqs. (8) and (9) until we had a good fit for

the observed time-dependent intensity of this one

applied potential. The amplitudes A0f and A0r were

constrained so that the intensity predicted by the model

at Vhigh for both Srise and Sfall was that of the observed

saturation intensity at the end of a full cycle of the

applied square wave potential. We then kept the value of

k , t1, and t2, and found new values for the parameters in

Eqs. (8) and (9) for each of the remaining applied

potentials. After a good fit was found for each of the

four applied potentials, we went back and varied k , t1,

and t2 and then repeated the whole process of fitting the

parameters of Eqs. (8) and (9). The process was repeated

several times until we had values of k , t1, and t2 which

seemed to produce good fits for all four of the applied

potentials: k�/73 mm2 s�1, t1�/0.004 s, and t2�/0.218

s. Values of the parameters A0f, A0r, Vcf, Vcr, bf, and br

in Eqs. (8) and (9) which produced good fits for each of

the applied potentials are included in Table 1. Note that

we have sometimes allowed the critical exponent b to

deviate from the theoretical value of 1/8. Since this

provides a superior fit to the observed intensities, it

suggests that under kinetic conditions, the intensity

response function is different from the steady-state

response function.

Fig. 5 compares the observed intensities with the

intensities obtained from our model. The model success-

fully predicts the long time delay associated with the

rising edge of the applied �/0.750 to �/0.703 V square

wave potential (D). However, the long tails associated

with the falling edge of the square wave potentials were

not explained correctly. This tailing effect can be seen

directly in the steady-state potential-dependent intensity

shown in Fig. 2: the Ising model predicts a sharp critical

transition that was not actually observed. The observed

potential-dependent tailing may be due to localized

inhomogeneities or impurities within the crystal that

shift the localized critical potential. When integrated,

such a range of critical potentials would result in a

characteristic tailing. Furthermore our assumption that

the incident X-rays are diffracted from a point on the

sample surface neglects the spread in potential of the

actual region of diffraction. This potential range would

produce an even greater tailing effect than that observed

in the steady-state situation. Since the tailing effects

Table 1

The model parameters used to produce good fits to the observed time-dependent intensity responses of four applied square wave potentials

Applied square-wave potential Fitting parameters

Vhigh (V) Vlow (V) A0f (counts/s) Vcf (V) bf A0r (counts/s) Vcr (V) br

�0.506 �0.748 6172 �0.705 0.125 6075 �0.718 0.125

�0.599 �0.751 6682 �0.714 0.125 8681 �0.700 0.175

�0.650 �0.752 6840 �0.718 0.125 14028 �0.712 0.250

�0.703 �0.750 20883 �0.727 0.325 65654 �0.718 0.425

The scattered intensity (S ) due to a localized potential V is given by S�A0 (V�Vc)
2b�B0.

Fig. 5. The observed time-dependent intensity responses to the applied

square wave potentials (A) �/0.506 to �/0.748 V; (B) �/0.599 to

�/0.751 V; (C) �/0.650 to �/0.752 V; and (D) �/0.703 to �/0.750 V are

respectively shown by squares, circles, up triangles and down triangles.

The best fits of the time-dependent intensity model incorporating the

RC potential response and the Ising intensity response are shown by

the black lines. For clarity, the intensities associated with the potential

jump �/0.650 to �/0.752 V have been offset by �/1000 counts per

second. The intensities of �/0.599 to �/0.751 V have been offset by

�/2000 counts per second, and the intensities of �/0.506 to �/0.748 V

have been offset by �/3000 counts per second.
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were observed, we next tried to incorporate them into

the overall cell model.

In place of Eqs. (8) and (9), we defined two new

numerical functions S?
rise(V ) and S?

fall(V ). These new

functions respectively describe the response to the rise

and the fall of the applied potential by linking each

observed intensity in Fig. 2 with its adjacent neighbor by

a line segment. The resulting functions map each of the

�/40 short intervals of the measured potentials to an

appropriate intensity. For each applied square wave

potential (Vhigh to Vlow), we again adjusted the relative

amplitudes of S?
rise(V ) and S?

fall(V ) to ensure that these

intensities at Vhigh matched the observed saturation

intensity. By simply shifting these connected functions

left or right (to adjust the critical potential for the

respective sweep range), we were able to generate a

better time response associated with the falling poten-

tial. The values of k , t1, and t2 remained the same as

when using the power law fits. The fits of the numerical

model to the observed intensity responses are shown in

Fig. 6. As expected this model more closely predicts the

observed tailing effects.

We also tried fitting our observations using the 1D

model solution Eq. (7) at varying positions relative to

the edge of the crystal. The results were not quite as

good as those predicted by the 2D model, but the value

of k that produced the best fit was consistent. For the

2D model (Eq. (4)) we found a good fit using the value

k�/73 mm2 s�1 when the intensity was calculated from

a point at radius 2.8 mm of a 4.0 mm radius crystal. For

the 1D model we found a good fit using the value k�/

119 mm2 s�1 when the position x�/1.2 mm (from the

edge of the cell) was used. Both values are reasonable for

the cell we worked with. The resistivity (r ) of our 1 M

NaClO4 solution is on the order of �/0.1 V m [12]. We

estimate the thickness (Dz) of the electrolyte film

between the crystal and the polypropylene sealing film
as �/ 10 mm. The capacitance per unit area (g ) near the

critical potential has been observed to be on the order

�/100 mF cm�2 [13]. These estimates predict a diffusion

constant k�/(Dz /rg ) on the order of �/100 mm2 s�1.

Thus our model values for k are reasonable.

6. Conclusions

In contrast to the system studied by Finnefrock et al.

[7], we have seen that the time response of the Bromide

on Ag(001) electrochemical cell is primarily determined

by the characteristics of its thin-layer geometry and may

be modeled as a two dimensional RC circuit. The model

value of the diffusion constant (k�/73 mm2 s�1) is

reasonable for the characteristics of the cell studied. We

have also mentioned that the 1D model provides a less
accurate prediction of the time-dependent intensity

when the incident X-rays are diffracted from a point

which is not near the edge of the crystal.

Further studies should be done in which the incident

X-ray beam probes different radii (r ) of the electro-

chemical cell to confirm the position dependence of the

timed intensity response. Faster transitions should be

observed near the edge of the crystal, and slower
transitions should be observed near the crystal center.

Such studies would allow a better characterization of the

time-response in this widely used experimental geome-

try. The position dependence of our model suggests that

the time dependence of the system may be eliminated by

moving the incident X-rays to the edge of the crystal.

Alternative methods of removing the time dependence

of the cell have been proposed [14].
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